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Determining mutant spectra of three RNA viral samples using ultra-deep 
sequencing

Abstract

RNA viruses have extremely high mutation rates that enable the virus to adapt to 
new host environments and even jump from one species to another. As part of a 
viral transmission study, three viral samples collected from naturally infected 
animals were sequenced using Illumina paired-end technology at ultra-deep 
coverage. In order to determine the mutant spectra within the viral quasispecies, it 
is critical to understand the sequencing error rates and control for false positive 
calls of viral variants (point mutantations). I will estimate the sequencing error rate 
from two control sequences and characterize the mutant spectra in the natural 
samples with this error rate. 
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Introduction

Viruses with RNA genomes replicate with extremely high mutation rates because 
their RNA polymerases lack the proofreading ability of DNA polymerases (1). At 
about 1 error per 10000 nucleotides copied, a point mutation is introduced nearly 
every time a single RNA virus replicates. Any given host-derived viral sample 
contains a diverse population of viral strains that are evolutionarily related through 
mutation. Such cloud of related genotypes is referred to as a quasispeices or a 
mutant swarm, whose genetic diversity and mutational speed confers its ability to 
adapt under selection pressure as a whole. Understanding the evolution dynamics of 
RNA virus is key to our understanding of viral disease progression, transmission
and developing antiviral therapeutics.

High throughput sequencing is beginning to make transformative impact on the area 
of viral evolution. Until recently, studies of viral genomes have mostly focused on 
the consensus sequence that identifies the predominant viral sequence but is 
uninformative about the population diversity present in the sample (2). To detect 
any minority variants, traditional cloning approach had been used where viral 
sample is diluted and cloned for Sanger sequencing. Not only is this procedure 
laborious and costly, it also has very limited resolution to detect the real 



heterogeneity of viral population in the samples. Ultra-deep sequencing enabled by 
next-generation sequencing platforms has the potential to reveal the mutant 
spectrum within a sample in high-resolution through massive coverage of the viral 
genome. The challenge however, is to accurately reconstruct the viral population 
from the sequencing data and differentiate real viral mutations (from the 
predominant sequence) in the minority variants from sequencing errors.

As a pilot study for a series of viral evolution studies conducted at Lawrence 
Livermore National Lab, three viral samples collected from naturally infected hosts -
-two fox rabies brain tissue samples collected during a 2009 Humboldt County
outbreak and one bovine coronavirus nasal sample collected from a calf at a 
Northern California farm – along with two 1kb plasmid clones were sequenced 
using Illumina Paired-end Technology at ultra-deep coverage. The plasmid clones 
serve as sequencing control in the study -- their known sequences provide the 
ground truth to their sequenced data and help define the combined PCR and 
sequencing error rate for the natural samples.

To control for sequencing errors and minimize false positive variant calls, we 
explored several approaches and constrains. First, to take advantage of the Paired-
end Technology, only overlapping regions of the read pairs were used to make 
variant SNP calls in this paper. The overlapping read pairs provide an added layer of 
error-checking. Second, we examined the relationship between quality scores and 
mismatch errors in the read pairs and developed ways to select quality score cutoff.  
Third, we incorporated mismatch error rates in the read pairs when making variant 
SNP calls (i.e. point mutations) so that the modified hypothesis testing is sensitive to
local error rate.

One first step to understanding viral mutational dynamics involves determining
whether point mutations evolved in isolation or in conjunction with each other. 
Without carrying out haplotype reconstruction (3), the range we can make 
inferences between point mutations is limited by the Illumina sequencing read 
lengths. We can, however, test genotype association wherever variant SNPs are 
covered by the same reads. In this paper we test genotype association between pairs 
of two nearby viral variants discovered by our algorithm.  

Method

Data

Five RNA viral samples were sequenced using Illumina Paired-end Technology for 
this study. Each sample took up 1 lane of an Illumina flowcell. The two control 
samples are: a 1kb plasmid clone containing a fragment of BCV virus and a 1kb 
plasmid clone containing a fragment of rabies virus. The three natural samples are 
one bovine coronavirus (BCV) sample prepared from nasal swab of a calf and two 
rabies samples prepared from brain tissues of two foxes. All samples were PCR 
amplified before sequencing. Only overlapping regions in the read pairs were 



considered for the present study. Analyses on the natural samples were carried out 
in sample-coordinates. 

Determining quality score cutoff

At every base, all overlapping read pairs were separated into two categories: 
matching and non-matching pairs. Matching pairs have two complementary 
nucleotides and non-matching pairs have two incongruent nucleotides. Quality 
scores (Q) for every base pair were compiled as follows. For matching read pairs, 
the average quality score was used. For non-matching pairs, the minimum quality 
score was used. Resulting two Q-score distributions were compared and used to 
generate Q-score receiver-operator characteristic (ROC) and ‘false discovery rate’ 
curves.

Sequencing errors can occur in two forms in overlapping read pairs.  Non-
complementarity between the forward and reverse strands at a given base indicates 
that at least one of the two nucleotides is erroneously incorporated. This type of 
error is easy to exclude, as the non-matching read pairs are excluded from analysis 
except those for quality control. A second, more rare but ‘hidden’ form of error is 
where two complementary errors occur on both the forward and the reverse 
strands such that the resulting read pair appears perfectly matched.  

Making variant SNP calls

We make variant SNP calls using hypothesis test based on the binomial distribution, 
where the probability of observing x or more mutations in N matching read pairs 
covering the base is given by the survival function of the binomial distribution
�(�, �)

P(� ≥ �) =  � ��
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The probability of sequencing error, �, is the combined PCR and sequencing error, 
�, adjusted by a function of the read-pair mismatch rate, �, at the base in question.

The read-pair mismatch rate, �, is the position-dependent rate at which a nucleotide 
is mis-incorporated into a single strand. For simplicity, we modeled the probability 
at which two complementary nucleotides are mis-incorporated simultaneously on 
forward and reverse strands at the same base as �2. Hence, we used the maximum of 
clonal control derived error and sequence-specific position-dependent mismatch 
rate as the adjusted base-dependent error rate for the paired end reads.

� = ���(�, ��)



P-value = 0.01 with Bonferroni correction was used as the significance threshold. Q-
value method by Storey (4) turned out to be not conservative enough.

Linkage analysis of adjacent variant SNP pairs

Variant SNPs were ordered according to their locations on the genome. Adjacent, or 
neighboring variant SNPs could be 1 bp or hundreds of bp apart. For every pair of 
adjacent variant SNPs, distribution of all genotypes covering the two loci were 
gathered from all reads spanning the two loci. For two given loci, a contingency 
table was constructed as below where C1, C2 were the consensus nucleotides at 
locus 1 and 2, respectively, and V1, V2 were the variant SNP nucleotides at locus 1 
and 2, respectively. The number of reads carrying each of the four genotypes of 
interest (other genotypes are possibly present since a viral quasispecies is
multiploid) was entered into the table.

# reads with 
genotype C2 V2

C1 C1--C2 C1--V2
V1 V1--C2 V1--V2

Fisher’s exact test was used to evaluate the statistical significance of these 
contingency tables, where the null hypothesis is that the two classifications, C1/V1 
and C2/V2, are not associated. If the null hypothesis is rejected and the proportion 
of reads covering V1-- V2 is large in comparison to those covering C1--V2 and C2--
V1, then it is likely that V1 and V2 are linked.

Results

Figure 1 shows the coverage levels for the two control samples in terms of raw read 
count (blue). The raw reads at a given base are unfiltered by quality scores. Some 
are in the overlapping regions of read pairs, others are in the non-overlapping 
regions of read pairs.   Some read pairs match, others do not. Figure 1 also shows 
coverage level by matching read pairs thresholded at Q ≥30 (in units of pairs). This 
filtering removes a large fraction of the raw reads. The resulting average coverage
levels by the matching read pairs for the BCV and rabies plasmid controls are 
116,010x and 581,855x read pairs, or 232,020x and 1,163,710x single reads. (All 
coverage information is given as read pairs from here on.)



Figure 1 Coverage levels for the two control sequences. Blue: raw reads. Red: quality score filtered 
paired-end reads, qscore >=30. Since only overlapping regions of the read pairs were used, the actual 
coverage for the paired-end reads is twice of what is shown in red. Only matching read pairs were used.

Error rates in the two control sequences

Error rates in the two control sequences served as the baseline error rate for the 
three natural samples. The error rate at a given base in a control sequence is the 
fraction of reads that do not agree with the known nucleotide at the base, i.e., the 
fraction of non-consensus reads at the base. The distributions of error rates in the 
two controls are shown in Figure 2 and Table 1. This error rate is the combined PCR 
and sequencing error. While the mean error rate is below 2.5e-05, the maximum can 
be as high as 0.0006.

Figure 2 Error rate histograms for the two control sequences



Table 1 Summary of error rates in the two control sequences

Control 
sample

Mean 
error rate

Median 
error rate

Maximum 
error rate

BCV 2.242e-05 1.119e-05 6.214e-04
Rabies 2.484e-05 1.657e-05 3.597e-04

Q-score analysis

During Illumina sequencing, every base call is issued a Phred-like quality score that 
indicates the confidence of the call – the higher the quality score, the more confident 
the base call is correct. The quality score of a given base, Q, is defined by the 
equation, Q = -10log10(e), where e is the estimated probability of the base call being 
wrong. A Q-score of 30 corresponds to an error rate of 1 in 1000. A Q-score of 35 
corresponds to an error rate of 3 in 10,000.

We sought to establish a quality threshold as a read inclusion criteria. To the first 
order, the matching overlapping read pairs represent correct calls and and 
mismatched read pairs represent incorrect calls. By comparing Q-scores of these 
two populations of reads, we can assess what cutoff value might best separate the 
correct from the incorrect calls.  Figure 3 shows in linear scale the Q-score 
distributions of matching vs. non-matching read pairs from BCV control data. Not 
surprisingly, the matching read pairs tended to have high Q-scores and nonmatching 
long Q-scores. However, the reverse is also true for a fraction of read pairs. The fact 
these two histograms overlap completely means there is no Q-score that can safely 
separate the ‘correct’ from the ‘incorrect’ reads (first order). Low scoring matching 
pairs are likely candidates for ‘hidden’ or complementary errors. High scoring 
mismatching reads suggest even matching reads with high Q-scores will contain 
complementary errors at some low probability. Although in practice we exclude all 
non-matching read pairs, nonetheless, they provide a best estimate of the error rate 
on single strand reads at each Q-score and upper bound for complementary errors 
in matching reads.

Figure 3 Q-score distribution of matching vs. non-matching reads from BCV control, 
shown in linear scale. Blue: matching read pairs. Red: non-matching read pairs.



Figure 4 Q-score distributions for matching vs. non-matching read pairs. Left: BCV control data. Right: 
rabies control data. Top: Q-score as reported at the base. Bottom: minimum Q-score within an 11bp 
window centered at the base. Blue: matching read pairs. Red: non-matching read pairs.

Figure 4 shows in log-scale the Q-score distributions for matching vs. non-matching 
read pairs. The two histograms intersect below Q = 25. To be more conservative, 
instead of using the Q-score provided for each base, we assign the minimum Q-score 
within bp window to each base (this was applied for subsequent analyses and 
discussions). In this case, the two histograms intersect below Q = 15. Again, if we 
view the matching read pairs as proxy for ‘positives’ and non-matching pairs as 
‘negatives’, then ROC curves are best for summarizing performance of a binary 
classifier system. Figure 5 shows ROC curves for the two control data sets. At Q = 30 
(red dots on black lines), more than 60% of the matching reads are excluded (false 
negatives) at a false positive rate of 10-4. This FPR of 10-4 is our estimate of single 
read error rate among reads with Q 30, and upper bound for erroneous matching 
read pairs. 

Another way to visualize this information is to plot the ‘false discovery rate’ at each 
Q-score q, where FDR is defined as the fraction of reads with Q q (positives) that 
are mismatched read pairs. This FDR is an upper bound estimated of the fraction of 
matching reads containing errors, or sequencing error among matching read pairs. 
At Q=30, FDR is below 3x10-6. Since this value is below the general estimate of PCR 
errors, we believe Q=30 is a reasonable threshold for matching read pair s inclusion.



Figure 5 ROC (top) and FDR (bottom) plots based on varying quality score thresholds.  Left: BCV control 
data. Right: Rabies control data. Blue: based on Q-scores at each base. Black: based on minimum Q-score 
within a 11bp window centered at each base. Red dots: Q-score = 30. Magenta dots: Q-score = 20. Cyan 
dots: Q-score = 10. 

Determining error rate for making variant calls 

We applied the variant call algorithm to the control data and found that the error 
rates estimated earlier using average error rate in the control data (Table 1) and 
FDR were too low. Table 2 shows the number of SNPs found in the control sequence 
for various error rates. Based on these results, a conservative error rate of 0.0005 
was chosen for making variant SNP calls on the 3 natural samples.  We speculate 
this combined error rate is dominated by the PCR error rate. 

Table 2 Number of "SNPs" found in the two control sequences given different error rates

Control 
Sample

Err rate
0.00005

Err rate
0.0001

Err rate
0.0004

Err rate
0.0005

BCV 30 12 0 0
Rabies 91 27 1 1

Making variant SNPs calls

Total of 160, 107 and 103 variants were called in the BCV, Fox1 and Fox2 samples, 
respectively (Table 3).



Figure 6 Raw (blue) and filtered paired-end reads coverage (red) for Fox1, Fox2 and BCV samples. Only 
matching read pairs were considered. Quality score filter for paired-end reads was Q>=30. Coverage for 
paired-end reads is shown in pairs, i.e., the actual number of reads is twice as many.

Table 3 Summary of coverage, variants and SNPs detected in paired-end reads of 3 natural samples

Natural 
Sample

# bases 
sequenced

Mean 
coverage

# variants in 
reads filtered 
at Q=30

# SNPs 
called at 
error rate 
= 0.0005

FDR

BCV 13434 73725x 21284 160 99.25%
Fox1 10905 62171x 20829 107 99.48%
Fox2 11183 85514x 22978 103 99.55%

Variant SNPs linkage analysis

For every pair of neighboring variant SNP loci, Fisher’s exact test was used to 
determine the statistical significance of the genotype distributions involving two 
variant SNPs and the corresponding consensus nucleotides at the two loci. For 



example, the 160 SNPs discovered in the BCV sample, form 159 neighboring loci 
pairs. Table 4 summarizes the significant test results at different p-value thresholds.

Fisher’s exact test 
p-values

# variant pairs 
in BCV

# variant pairs 
in Fox1

# variant pairs 
in Fox2

10-10 <p < 10-3 2 0 0
10-50 < p < 10-10 4 0 0
10-100 < p < 10-50 4 0 0

p < 10-100 6 0 0

Linkage between 6 of the 159 pairs of BCV variant SNPs were highly significant. The 
fox rabies samples however did not have any significantly linked variant SNPs.

Discussion

In general it is difficult to separate PCR and sequencing errors.
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Readme.txt
-------------------------------------------------------------------------------
Code written by Haiyin Chen
-------------------------------------------------------------------------------
plot_coverage_sample.py -- plot coverage
errorprofile.py -- plot histogram of error rates
qscoreHist.py -- make q-score ROC plot and estimated % error reads 

for given qscores
call_snps_hc.py -- compute p-value for variant SNPs based on binomial 

distribution, generate *.sig files
getNumSigVar.R -- get number of significant variants in the *.sig 

file. p<0.01/Bonferroni correction
BMIproject.R -- Bonferroni correction of variant SNP p-values, 

Fisher exact test on variant pair linkage
-------------------------------------------------------------------------------
Code written by Jonathan Allen (LLNL colleague)
-------------------------------------------------------------------------------
freq2error.pl -- obtain error rates/subconsensus variant frequency 

in control sequence
rbam_pe_hap -- generate genotypes for given locus pairs


